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Benchmarking plays a central role in the regulatory scene. Regulators set tariffs according to a performance
standard and, if the companies can outperform such a standard, they can retain the gains observed by such
outperformance. Efficiency performance is usually assessed by comparison (or a benchmark) against either
other companies or the company's ownhistorical performance. This paper discusses the impact of environmental
variables on the efficiency performance of electricity distribution companies. Indeed, such variables, which are
argued to be unmanageable, may affect the electricity utilities' performance. Thus, this paper proposes a simula-
tionmethodology based on design of experiment philosophy for statistically testing environmental variables and
the interactions among them, enabling regulators to build the best suited semi-parametric two-stage model of
electricity utility benchmarking analysis. To demonstrate the power of the proposed approach, experimental
simulations are carried out using real data published by Brazil's regulator. The results show that environmental
variables may impact efficiency performance linearly and nonlinearly.
© 2014 Elsevier B.V. All rights reserved.
1. Introduction

When competition is feasible, the market determines the optimal
combination of price and quality. A market automatically converges,
economists believe, to prices that reflect efficient costs for suitable prod-
ucts. In natural monopolies, however, which are what electricity distri-
bution networks are, competition is not feasible. Here optimal cost
efficiency and quality standards are determined by the hand of the
regulator.

Initially, the regulator makes sure that a utility's costs are all recov-
ered and supplemented by a reasonable return. This approach, known
as rate-of-return, sets prices based on observed costs; it offers a compa-
ny no stimulus and no incentive, to be efficient. It is the regulator's duty,
however, to not only ensure non-discriminatory access charges but to
also design charges that reflect efficient costs.

Thus, regulators around theworld have investigated and implement-
ed numerous efficiency-based regulatory approaches by benchmarking
electricity utilities (see Jamasb and Pollitt, 2001). Benchmarking analysis
is usually integrated into a RPI-Xmechanism, amechanism that refers to
incentive regulation (Brophy Haney and Pollitt, 2009; Evans and
Guthrie, 2006; Joskow, 2008). Such a regulation model adjusts tariffs
based on the rate of inflation — the Retail Price Index (RPI) — and on
the Distribution System Operators' (DSOs) efficiency compared to that
of the reference company, and efficiency is known as the expected effi-
ciency savings, or X-factors.

The most widely used of the benchmark techniques are Corrected
Ordinary Least Squares (COLS), Stochastic Frontier Analysis (SFA), and
Data Envelopment Analysis (DEA). The first two select an equation
that defines the relationship between the explanatory and dependent
variables. As dependent variables are usually considered the costs and
the explanatory variables are usually the services to be analyzed. Such
approaches are defined as parametric. Then, the efficiency gap to be
closed is defined by the error between the selected equation and the
actual value of costs. The third benchmark technique, DEA,wasfirst pro-
posed by Charnes et al. (1978), and it is a non-parametric technique.
DEA uses linear programming to define an envelope around observa-
tions. The frontier is defined by the envelope that efficient firms form
around less efficient ones. The distance separating the two defines the
efficiency gap. Shuttleworth (2005) pointed out that DEA used on
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electricity distribution business has limitations regarding the small
sample size and statistical inferences. Jamasb and Pollitt (2003), howev-
er, have shown that to dealwith the sample size problem regulators can
use cross-country benchmarking. These limitations may also be over-
come using bootstrap techniques (see Odeck, 2009), robust solutions
of linear programming problems contaminated with uncertain data
(see Sadjadi and Omrani, 2008), or Bayesian inferences (see Tsionas
and Papadakis, 2010).

Nevertheless, other issues arise when DSO results are influenced by
certain contextual factors. In the utility business, these contextual fac-
tors are also known as environmental variables. Businessmen argue
that unmanageable environmental variables usually affect a firm's
costs and quality efficiency performance.Weather conditions, for exam-
ple, have been shown to be highly correlated to the reliability of a distri-
bution network (Billinton and Allan, 1984; Coelho et al., 2003; Domijan
et al., 2003; Wang and Billington, 2002). It may be argued, on the other
hand, that utilities adapt their operations and investment to mitigate
the environment's adverse effects. Indeed, Yu et al. (2009), who studied
the effects of weather conditions in the cost and quality performance of
UK DSOs, concluded that on average the impact is small. The authors ar-
gued that considering one or another output in the efficiency analysis
might internalize the effect of the contextual factors.

In most countries, contextual factors are summed up as weather
conditions. However, in an expansive country like Brazil, the environ-
mental variables may also include the regions' disparate conditions
such as salary and population density. Indeed, as further discussed,
besides a wide area country, Brazil has a large heterogeneity that char-
acterizes the Brazilian utility industry. For instance, some DSOs are
responsible for just a single town with high consumption density,
whereas others are responsible to deliver energy in large states. Other
discrepancies are discussed in a recent study by Brazil's regulator, who
suggested that four environmental variables could explain DSOs' ineffi-
ciency (ANEEL, 2010, 2011), as further discussed.

In analyzing environmental variables, two drawbacks arise:first, one
must use a mathematical model which measures the influence of envi-
ronmental variables on efficiency score with a reasonable degree of
confidence; second, one must choose a set of environmental variable
and test their significance on the mathematical model as well as the
interactions among them.

For the first drawback, the semi-parametric two-stage approach has
been gaining great attention in the literature (Chilingerian and Sherman,
2004; Ray, 2004; Ruggiero, 2004). Such approach regresses the efficien-
cy estimated using traditional DEA (first stage) on environmental
variables (second stage), which is also known as two-stage DEA. In
exploring semi-parametric two-stage approach, Simar and Wilson
(2007) thus proposed a data-generating process consistent with non-
parametric efficiency estimates, avoiding problems with serially corre-
lated data. In the approach proposed by Simar and Wilson (2007), the
bootstrap technique makes model inference possible and feasible. Such
approach is used in this paper to model the environmental variables'
impact in efficiency scores. As for the second drawback, despite several
applications in the literature, no straightforward way exists to identify
regressors; the applications require different statistical techniques and
often end up being a process of trial and error.

In this sense, this paper presents an alternative approach based on
design of experiments (DOE). DOE is a collection of statistical tech-
niques capable of generating and analyzing experimental designs in
which several factors are varied simultaneously. These experimental
design methods, introduced by Fisher (1966), are widely used in pro-
duction and operationmanagement, aswell asmanufacturing and qual-
ity control (Montgomery, 2009). The methodology seeks to plan an
experimental design so that appropriate data can be obtained that
lead to good conclusions, by using a minimal number of experiment
runs. Thus, in analyzing environmental variables, the DOE technique
may help evaluate the significance of each factor in estimating efficien-
cy, as well as it is also useful in assessing the statistical significance of
interaction among variables. The regulator is then able to assess the
impact of environmental variables on DSO inefficiency by using the
two-stage DEA model.

Recently, DOE has been used extensively in applications related to
simulation analysis (see Kleijnen, 2005). Balestrassi et al. (2009), for in-
stance, used the fractional and full factorial designs to better determine
the parameters of an artificial neural network (ANN), bypassing the
trial-and-error technique. Sun and Li (2013), in turn, have used
designed simulation experiments in optimizing operating room sched-
uling. In the same way, Oliveira et al. (2011) presented a novel ap-
proach, using mixture design of experiments, to adjust the conditional
value at risk metric for a mix of contracts on the energy market.

Importantly, this paper has no ambition of constructing a new
benchmark model. It intends rather to propose, with the help of DOE,
a simulation approach for environmental variable analysis. Its major
contribution resides in the proposing of a simulation methodology for
statistically testing environmental variables and the interactions
among them, enabling analysts to build the best suited second stage
model to electricity utility benchmarking analysis, when two-stage
semi-parametric approach is considered. To demonstrate the power of
the proposed approach, experimental simulations are carried out
using real data published by Brazil's regulator. The results show that en-
vironmental variables may impact efficiency performance linearly or
nonlinearly, so that the approach proposed in this paper may avoid a
misspecified model.

The remainder of this paper is organized as follows: Section 2 briefly
reviews some incentive regulation concept and Brazil's network regula-
tion background; Section 3 presents the semi-parametric two-stage
DEA used in this paper; Section 4 discusses the features of DOE philoso-
phy and lays out the methodology adopted; and Section 5 presents the
results and a discussion of the experimental simulated dataset. Finally,
Section 6 presents our conclusions.

2. Regulation of electricity distribution network in Brazil

When dealing with utility regulation, regulators may consider two
incentive mechanisms: revenue cap and price cap. The revenue cap
limits the predetermined level of annual revenue that a DSO can collect
from its consumers. The price cap defines, based on the prices of differ-
ent products (access, energy, demand, etc.), the annual permitted reve-
nue. In these regulatory scenarios, prices are decoupled from observed
costs.

The annual permitted revenue in incentive regulation consists of set-
ting tariffs according to a performance standard and, if the companies
can outperform such a standard, they can retain the gains observed by
such outperformance. Hence, the DSO ismotivated to operate efficiently
and thereby cut down on costs to increase the shareholders' profits.
Under such mechanism, benchmarking plays a central role. In fact,
regulators' measure of the performance standard is usually assessed
by comparing it against the company's own historical performance
and/or against other companies. Thus, based on each DSO's perfor-
mance analysis, the regulator sets its initial annual permitted revenue
P0. Once the permitted income is so defined, the cost allocation estab-
lishes how to collect it from the end-users (Steele Santos et al., 2012).

Nevertheless, when a capital-intensive industry (like that of an elec-
tricity utility) adopts an efficiency-based regulatory approach it can lead
to a degradation in service quality, so one must consider the X-factors.
By establishing X-factors the regulator considers a benchmark model
for efficiency and quality; it uses X-factors to close any eventual ineffi-
ciency gaps. The benchmark is usually set by the identification of the
most efficient practice in the sector. Jamasb and Pollitt (2003) presented
some approaches for efficiency benchmark models. Also, Ajodhia and
Hakvoort (2005) discussed quality regulation approaches.

Eq. (1) describes the usual framework of the incentive regulation
mechanism: each company faced with a permitted annual revenue P0,
which is kept for the subsequent period, say a year, adjusted only to a
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retail price index RPI less than the efficiency parameter X.

P1 ¼ P0 RPI−Xð Þ ð1Þ

Eq. (1) is applied for all subsequent periods within the same regula-
tory lag (usually four or five years). Once the regulatory lag is over, a
price review takes place, defining a new P0, and the process starts all
over again.

Note that, although the efficiency parameter X explicitly accounts for
an efficiency adjustment along the regulatory period, efficiency may
also be promoted when the regulator sets the initial permitted revenue
P0. Therefore, in addition to the problem of estimating the efficiency
standard, the regulator may also decide how to translate it into tariffs.

Brazil has 63 DSOs, with each having a franchise over a specific
territory. The federal government gives directives through concession
contracts, which are standard for all companies. The institution respon-
sible for overseeing these contracts is Brazil's federal regulator,
the Brazilian Electricity Regulator Agency,1 an independent entity
empowered with setting tariffs, quality standards, and penalties.

Brazil's electricity utility industry is a study in diversity. Some com-
panies deliver energy in the large states of the Amazon region; other
companies are responsible for just a single townwith high consumption
density. Indeed, states in the south arewealthier andmore densely pop-
ulated than other regions and thus tend to administer to more complex
franchise areas.

The distribution network is formally defined as every installation
below 230 kV, including transformers whose secondary voltage is
below this value. Tariffs for DSOs are set according to each company's
franchise contract but based on common standards. The franchise
contract establishes a price-cap with tariffs adjusted yearly for RPI-X
with a regulatory period varying between three and five years.

The regulated costs are categorized as controllable and pass-through
costs. Themanageable costs include all distribution costs: capital expen-
diture, operational and maintenance costs. Network losses in the distri-
bution network, although regulated asmanageable, are defined as pass-
through. At the national level, the manageable costs of distribution
represent about 29% of the electricity bill.

Since 2012, a new price-setting methodology has been in place. The
current approach mainly innovates at setting the operating costs in
Brazil. Following what has been done in other countries around the
world, the Brazilian regulator has been using benchmark analysis to
set X-factors. In Brazil, X-factors is designed to capture three different
inefficiency gaps within regulatory lag: Pd seeks to measure the DSO's
average productivity, Q refers to the quality standard and T measures
eventual inefficiency gap in operational and maintenance costs. Thus,
Brazil's X-factor is defined as:

X ¼ Pd þ Q þ T: ð2Þ

Pd is obtained by the total productivity considering capital expendi-
ture and operational expenditure costs, whereas the factor Q is set by
minimal quality standard. As for factor T, which is the focus of this
paper, it is related to efficiency score, estimated by benchmarking oper-
ating costs the operating costs in order to measure relative inefficien-
cies. Brazil's methodology estimates efficiency on operational and
maintenance costs by using semi-parametric two-stage approach in
order to set T-factors, which seek to close eventual inefficiency gap on
operating costs. First, the efficiency scores are calculated byDEA consid-
ering DSO's usual operating variables and non-decreasing return to
scale. A COLS is also applied to the same data set to verify the consisten-
cy of results. In the second stage, the efficiency scores are normalized ac-
cording to environmental variables tomake provision for heterogeneity
among the regulated companies. Such environmental variables are cho-
sen to describe the wide discrepancy that characterizes the Brazilian
1 http://www.aneel.gov.br/?idiomaAtual=1.
utility industry, as further discussed. The semi-parametric two-stage
model used is set based in basic statistical tests in the second stage anal-
ysis, ignoring potential interactions among environmental variables.
Moreover, the analysis is carried out by splitting DSOs into two groups:
big companies (which delivered more than 1 TWh) and small compa-
nies (otherwise). This is so, since companies with very different size
tend to present different return to scales.

In order to extend the analysis reported by the Brazilian regulator,
the next section presents the two-stage DEA approach which may be
used in environmental variable analysis. Nonetheless, the approach
proposed here may easily be extended to other two-stage benchmark
models.
3. Two-stage DEA applied to electricity distribution sector

Data envelopment analysis is a non-parametric technique that com-
putes efficiency. The idea is to find, using linear programming, the best
practices from a sample of firms within a set of comparable Decision
Making Units (DMUs). A feasible production set is generally defined
by a convex region containing sample observations of firms' inputs
and outputs. The relative performance of DMUs is obtained according
to their locationwithin a production set. The Pareto–Koopmans-efficient
firms, the ones that are fully efficient,2 then delineate an efficiency
isoquant frontier by the envelope they form around the less efficient
firms. A company's efficiency is determined by the distance measure of
a DMU from the isoquant.

Efficiency can bemeasured inmanyways. Farrell (1957) proposed a
radial measure. It may be used either in the input or output spaces.
Using radial distance, the efficiency score defines the amount that
DMU must reduce (increase) its input (output) to lie on the isoquant.
Thus, the radial distance to the frontier is considered a measure of inef-
ficiency; i.e., it defines the inefficiency gap. In other words, the DEA sets
the benchmark DMUs and the distances of other firms to them. When
the mix within inputs and outputs in movements towards the frontier
is not preserved, one has a non-radial efficiency score (Cooper et al.,
2007; Thanassoulis et al., 2008). This paper, however, does not consider
such an approach.

A number of DEA models have been developed for different
purposes. Basically, DEA can be input (or output) oriented. The input
computes the minimal resources required to produce a given level of
outputs. The output maximizes the production for a given level of in-
puts. Depending on the case, one may be interested in reducing inputs
and increasing outputs altogether. In these cases, non-oriented DEA
models may be used.

Furthermore, DEA can be specified as Constant Returns to Scale
(CRS) or Variable Returns to Scale (VRS). The CRS approach considers
that an increase in the inputs leads an increase in the output by the
same proportion. Thus, the relative efficiency is unaffected by the size
of the company. VRS, on the other hand, is defined when the linearity
on input/output fails to hold. In this case, companies are more likely to
be compared by size. When the returns to scale are not constant, non-
decreasing (NDRS) and non-increasing (NIRS) returns to scale may
also be defined.

When environmental variables affect a company's performance, one
may use the two-stage semi-parametric approach known as two-stage
DEA. The first stage is defined by traditional DEA approaches. In the
second stage, the estimated efficiency is regressed on environmental
variables, which are considered unmanageable. Then, the efficiency
scoremay be corrected considering the contextual factors. The problem
in using two-stage DEA is that the results may be biased, since environ-
mental variables are highly correlated and efficiency scores do not
follow normal distribution. In handling these problems, one may
2 Cooper et al. (2007, p.45) state that “A DMU is fully efficient if and only if it is not pos-
sible to improve any input or output without worsening some other inputs or outputs.”
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apply the bootstrap technique, such as the one proposed by Simar and
Wilson (2007).

In this paper, we use the two-stage DEA approach as Brazil's regula-
tor does, an approach similar to that proposed by Simar and Wilson
(2007). Here the bootstrap technique is used to make inferences on
the second stage regression. The model is described below.

3.1. First stage DEA

In regulatory contexts, DSOs must provide services to all consumers
in their service area considering the operational and maintenance
costs allowed by the regulator (Jamasb and Pollitt, 2001; Lowry and
Getachew, 2009). Thus in the first stage of DEA, input may be consid-
ered as the operational and capital costs. Furthermore, the most com-
monly used outputs regard the number of costumers (NC) and energy
delivered (ED). The former represents commercial costs and the latter
represents network density. Besides these outputs, the network length
(NL) is also considered. NL represents maintenance costs.

The regulator expects DSOs to use their permitted annual income
efficiently. If they fail to, the regulator cuts off the regulatory incomes
as to stimulate DSO best practices. Thus, in analyzing DSO performance,
the regulator usually considers the input-oriented DEA approach. Note
that in this model, only one input is considered. Thus, Farrell's (1957)
radial measure of efficiency is used, with no loss of generality. The
DEA model used in this paper is given as follows:

min
θi ;λ

θi

Y � λ≥yi
X � λ≤θixi

λ≥0
λTu≥1

��������

9>>=
>>;
:

8>><
>>:

ð3Þ

In Eq. (3), θi is the efficiency parameter for the i-th DMU; X and Y are
then×m input and n× r outputmatrix, respectively, andλ is theweight
parameter. Furthermore, n, m, and r are the amount of DMUs, inputs,
and outputs, respectively. The vector u is a column vector with all
entries equal to one. Finally, xi and yi are the input and output vectors
of the DMU analyzed.

The DEAmodel of Eq. (3) defines the NDRS approach sinceλTu≥ 1. If
θi reaches one, the input level is optimized and cannot be reduced for
the given level of output. On the other hand, if θi is less than one, a cut
off should be made to DSO costs to reach the given level of outputs.
Thus the efficiency frontier is defined by θi equaling to one.

Indeed, this is the approach used by the Brazilian regulator, as
discussed in Section 2. However, the approach described in this paper
may be applied with any DEA approach, as well as any efficiency
analysis.

3.2. Second stage DEA

In thefirst stage, the technical efficiency is obtained, i.e., the ability of
companies tominimize inputs to produce a given level of outputs. In the
second stage, however, one is interested in the impact of contextual
factors. Thus, the two-stage DEA allows environmental variables to be
considered in the efficiency analysis. However, as stated above, usually,
the first-stage variables are highly correlated to second-stage variables,
so the regression results are likely to be biased. To overcome this draw-
back, Simar andWilson (2007) proposed using the bootstrap technique
to make statistical inferences. Thus, if a company must confront envi-
ronmental variables zi, one may write the regression:

δi ¼ ψ zi;βð Þ þ εi≥1: ð4Þ

In Eq. (4), ψ is a general function of β, usually defined as linear or
polynomial relationship on z. Furthermore, εi is the error independent
and identically normally distributed. Finally, δi = 1/θi.3 To solve this
problem then, one may use censored regression. Censored regression
is a regressionmodel where efficient DMUs are censored at 1.00. It esti-
mates the relationship between the explanatory variable and the
censored dependent variables.

The bootstrap technique for solving a two-stage DEA is as follows:

I. Compute the first stage efficiency using Eq. (3).
II. With the help of regression censored in 1.00 by left, estimate β̂ of

β, and the error variance σ̂2
ε of Eq. (4)'s σε

2, considering only the
inefficient companies.

III. Loop over (a) and (c) L times to obtain the bootstrap estimates of
β and σε

2;
a. For each inefficient firm, draw εi⁎ as from the normal distri-

bution N 0; σ̂2
ε

� �
, with left truncation at 1−z � β̂

� �
.

b. Compute efficiencies δ�i ¼ zi � β̂ þ ε�i .
c. With the help of regression censored in 1.00 by left, esti-

mate β̂
�
of β, and the error variance σ̂2�

ε of σε
2.

IV. Use the bootstrap values to correct the estimate β̂ of β, and the
error variance σ̂2

ε of σε
2, and construct estimated confidence

intervals.

Once estimated, the impact of environmental variables may be ad-
justed for each company, considering, for example, the mean scenario
for these variables. However, prior to this adjustment, themodel analy-
sis and selection may be performed, so that the chosen are only vari-
ables that truly impact the efficiency performance. A widely used
approach in model selection is the consistent information criteria
index, as the Bayesian information criterion (BIC) (Schwarz, 1978),
which is given in Eq. (5).

BIC ¼ −2 � ℓþ ln nð Þ �
Xp

i¼1

i ð5Þ

In Eq. (5), ℓ refers to the likelihood of estimated model; p stands for
the number of parameters estimated in regression analysis, and n is the
number of observed outcomes.

In general, when using information criteria, some candidates are se-
lected and estimated. Thus, onemay compute BIC using Eq. (5) for each
estimated model. As a rule of thumb, one chooses themodel that yields
the smallest value.

4. Design of experiments methodology for assessment of environ-
mental variables

In model analysis, one may use multivariate tools as factor analysis
and principal component analysis. The former seeks to extract compos-
ite factors froma set of observed variables; the latter uses the covariance
information matrix to rotate a variable's reference axis to identify how
the variance of data is explained. Such techniques, however, usually
simplify the analyzed model based on eigenvalue analysis. An alterna-
tive approach lies in the design of experiment (DOE) methodology.

DOE, with its numerous success stories (see Montgomery, 2009), is
considered one of the most important methodologies for researchers
handling experiments in practical applications (Balestrassi et al.,
2009). Today, DOE resources are incorporated in many statistical
software packages that ease calculation and interpretation of results
(Chan and Spedding, 2001).

According to Montgomery (2009), DOE is a collection of statistical
techniques capable of generating and analyzing experimental designs
in which several factors are varied at once rather than one at a time.
Among the most common available designs are the screening designs,



Table 1
Full factorial design for F environmental variables.

r z1 z2 z3 z4 z5 … zi BIC

+1 −1 −1 −1 −1 −1
F = 1 2 +1 −1 −1 −1 −1

3 −1 +1 −1 −1 −1
F = 2 4 +1 +1 −1 −1 −1

5 −1 −1 +1 −1 −1
6 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1

F = 3 8 +1 +1 +1 −1 −1
9 −1 −1 −1 +1 −1
10 +1 −1 −1 1 −1
11 −1 +1 −1 +1 −1
12 +1 +1 −1 +1 −1
13 −1 −1 +1 +1 −1
14 +1 −1 +1 +1 −1
15 −1 +1 +1 +1 −1

F = 4 16 +1 +1 +1 +1 −1
17 −1 −1 −1 −1 +1
18 +1 −1 −1 −1 +1
19 −1 +1 −1 −1 +1
20 +1 +1 −1 −1 +1
21 −1 −1 +1 −1 +1
22 +1 −1 +1 −1 +1
23 −1 +1 +1 −1 +1
24 +1 +1 +1 −1 +1
25 −1 −1 −1 +1 +1
26 +1 −1 −1 +1 +1
27 −1 +1 −1 +1 +1
28 +1 +1 −1 +1 +1
29 −1 −1 +1 +1 +1
30 +1 −1 +1 +1 +1
31 −1 +1 +1 +1 +1

F = 5 32 +1 +1 +1 +1 +1
.
.
.

F 2F

4 Indeed, surveys presented in literatures shows that there is no consensus on the best
choice of variables to measure cost efficiency of distribution networks (Ajodhia, 2006;
Jamasb and Pollitt, 2001).
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fractional or full factorial designs, response surfacemethodology, evolu-
tionary operation, and mixture designs.

The advantage in using simulated experimental designs is that one is
able to gather information,while avoiding trial and error analysis, about
a process through systematic planned experiments. In a decision model
approach where the analyst must choose the presence or absence of a
variable in a model, one has 2p candidates to be evaluated.

The use of DOE in analysis of simulated experiments was reviewed
by Kleijnen (2005). DOE is used in simulation for sensitivity analysis
of the considered factors. Using statistical analysis, one may detect the
unimportant factors and thereby simplify the simulation model. An
important thing to remember when using DOE for simulation is that
the main goal is not optimization itself. Efforts are dedicated to find
robust policies or decisions.

In this paper, we propose using DOE to gather information, by simu-
lating a two-level factorial design, about the degree of influence of envi-
ronmental variables on an efficiency score. In this kind of experimental
design, researchers examine how the presence (level +1) or the ab-
sence (level-1) influences each environmental variable in DEA model.
Considering F environmental variables that may impact the efficiency
score, a full factorial design is presented in Table 1.

In analyzing the simulated results, the metamodel considering all F
main effects and iterations may be used. This metamodel is shown in
Eq. (6).

BICr ¼ β0 þ
XF

i¼1

βizi þ
XF

i; j¼1;ib j

βi; jzizi þ…þ β1;2;…;Fz1z2⋯zF þ ε ð6Þ
In Eq. (6), β0, βi, βi,j, …, β1,2,…,F are known as effect coefficients.
Furthermore, zi is the observed value of environmental variable i, in
the sameway of Eq. (4). Finally, r is the r-th run of experimental design.
Note that the experimental design of Table 1 is an orthogonal design, so
that the estimates of Eq. (6) are not correlated.

Themetamodel of Eq. (6) may be obtained with the help of ordinary
least squares (OLS) ormaximum likelihood estimation (MLE). The error
ε is considered independent and identically normally distributed. Once
estimated, the metamodel may be then analyzed using BIC and two
sample-t hypotheses and nonparametric tests. The aim is to verify the
difference in mean response between the two levels of each factor, as
well as the interactions among them. The critical value for the statistics
used is obtained using a 5% significance level.

The two-stage DEA approach described in Section 3 is used in the
comparative efficiency analysis, where the choice of variables and
model specification is a fundamental aspect of the DEA benchmarking.
Recall, however, that this paper aims to propose a simulation approach
to help analysts analyze the environmental impact on efficiency perfor-
mance. Thus, no methodological ambitions exist for defining which
input or output variables ought to be considered; the goal is to focus
on a DOE based simulation approach to analyze the environmental var-
iables.4 Thus, we follow themodel of Brazil's regulator, discussed briefly
in Section 2. Hence, in the input-oriented DEA model laid out in
Section 3.1, the input is the accounting operational expenditure
(Opex) and the outputs are the network length (NL), number of con-
sumers (NC), and energy delivered (ED). In its benchmarking analysis,
Brazil's regulator chooses these three output variables as cost drivers,
arguing that such an analysis is the most consistently adopted by regu-
lators of other countries. Remarkably, under Brazilian regulation, capital
costs are treated separately. Following DEA benchmarking, to analyze
the impact of context variables, one may define the environmental var-
iables. In small countries, the number of contextual variables, if they
exist at all, may be few. In an expansive country, environmental vari-
ables aremore likely to abound. In the UK, for example, the DSO perfor-
mance is affected by weather variables only (see Yu et al., 2009). To
explain inefficiency performance around Brazil, in contrast, Brazil's reg-
ulator publishes a technical report that mentions four environmental
variables (ANEEL, 2010, 2011): mean wage, precipitation index, com-
plexity index, and consumer density. Indeed, this group of environmen-
tal variables is meant to account for the heterogeneity among the
regulated companies. Again, this paper has no ambition for defining
which environmental variables ought to be considered, but to use
simulation based onDOEmethodology for statistically test environmen-
tal variables and the interactions among them, enabling the regulator
to build the best suited second stage model to electricity utilities
benchmarking analysis, when considering the semi-parametric two-
stage approach.

Thus, we first estimate DSOs' efficiency using DEA as described
above. Once the first stage is achieved, the environmental variables
are regressed against the efficiency score obtained in the first stage
considering full factorial analysis discussed above. For this sake, the
censored regression is used jointly with bootstrap, as discussed in
Section 3.2. The results are then analyzed and a discussion about the
statistical significance of environmental variables in the efficiency
scores of DSOs is presented. The decision analysis is based on BIC in
order to discuss model specification, and two sample-t tests are per-
formed for each factor, identifying themost important (environmental)
factors for inefficiency, as well as their interactions. Finally, the results
are compared to Brazil's regulator model, explicating the difference
between them.



Table 2
Input and outputs variables summary statistics.

Variable n Mean Min Max

Opex ($) 203 397.330.519 75.600.376 1.869.287.128
ED (MWh) 203 4.229.024 685.523 18.053.158
NC 203 1.923.808 434.378 6.832.546
NL (km) 203 82.909 8.040 460.219

Table 3
Environmental variables summary statistics.

Variable n Mean Min Max

MS 203 8.0779 7.5631 8.6835
PI 203 7.0019 0.0000 7.8038
CI 203 0.2145 0.0284 0.4581
CA 203 9.9693 9.0137 10.7920

MS, PI and CA are natural logarithm of the original data
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5. Data set and experimental simulation

The two-stage DEA benchmarking analysis presented in this paper
uses the data set published by Brazil's regulator for the proposal of op-
erational costs based on data for the 61 main distribution companies
(from 2003 to 2009). Such data may be found on the regulator's
website5 and is available as electronic supplementary material to this
paper. Since less than 10% of the energy delivered in Brazil comes
from small companies, in this paper, we analyze only the big companies
group, yielding 29 DSOs. Table 2 presents descriptive statistics for input
and outputs variables.

Note, from Table 2, that Opex presents a wide range. The DSO with
minimum allowed Opex is permitted to collect about $ 75.6 million an-
nually to cover its operational andmaintenance costs, whereas the DSO
with maximum allowed Opex can collect more than $ 1.8 billion. Thus,
even small difference in efficiency score may represent a great amount
of money overpaid/underpaid by the consumers. If consumers overpay
the operating costs, DSOs earn more than the fair Opex. On the other
hand, if the consumers underpay the operating costs, DSOs may have
a deficit in its account.

Thus, in showing the power of the proposed approach in this paper,
we first describe the actual Brazilian second stage model. Next, the DOE
simulation approach is performed to identify the best suited second
stagemodel. The comparison between the second stagemodel obtained
by DOE philosophy and the model used by Brazilian Regulator is then
presented.
6 The significance level used by Brazillian regulator is 10%.
7 Two replicates are chosen, since the simulatedmodel is based on bootstrap approach,
5.1. The second stage model in Brazil

Brazil's regulator has, as described above, established four contextu-
al factors that may impact DMUs' performance. The first environmental
variable considered refers to mean salary (MS), which represents the
mean employees incomes based in a government database. Such envi-
ronmental variables tend to capture the wide variation on cost of living
among the regions, representing the richness of each region. The second
environmental variable regards a precipitation index (PI), which is
agreed to be correlated to operational and maintenance costs. Brazil's
regulator advocates that, depending on weather condition, DSOs may
face an increase in outages,whichdemandsmore operational andmain-
tenance teams. A complexity index (CI) is defined as the third environ-
mental variable. The CI measures difficulty faced by DSOs in combating
non-technical losses, such as electricity theft. A company that has a
concession area with a higher degree of complexity usually has greater
difficulty in reducing their losses compared to the other whose conces-
sion area has a lower index, so it may involve different operating costs.
Finally, the fourth environmental variable is consumer per area (CA),
which captures consumer density. Indeed, DSOs that have a high
concentration of consumers tend to observe lower operating and
maintenance costs.

These environmental variables are computed based on different
approaches proposed by Brazil's regulator. For instance, MS and CA
are, respectively, a simple average and ratio based on government and
regulator databases' data, respectively; CI is based on an econometric
approach that refers to socioeconomic aspects such as electricity theft;
5 http://www.aneel.gov.br/?idiomaAtual=1.
PI is obtained based on isohyets curves on the DSO area. Table 3 summa-
rizes the statistics on these environmental variables.

Based on the observation of these environmental variables, Brazil's
regulator proposes the use of a linear model to represent the relation-
ship among efficiency score obtained in the first stage and environmen-
tal variables. Such model is given by:

δi ¼ −4:45þ 0:77zMS þ 0:27zPI þ 0:46zCI−0:22zCA þ ε: ð7Þ

In Eq. (7), zMS, zPI, zCI and zCA refer to the environmental variablesMS,
PI, CI and CA, respectively. Importantly, all these environmental
variables have shown statistically significance for the linear model of
efficiency score.6 The index criteria of the model of equation is BIC =
1052.9. The econometric model of Eq. (7) is further used to compare
Brazil's regulator model to the one obtained by DOE simulation ap-
proach, which is discussed next.

5.2. Second stage model by the means of DOE

With the environmental variables described above, DOE is now used
for sensitivity analysis of environmental variables. For this sake, two rep-
licates of full factorial design are used, yielding32 simulated experiments.7

The approach used is given by Eq. (4),with linear and interaction relation-
ships being considered. The presence of each environmental variable in a
model may be evaluated, so that the evaluations consider the presence
(+1) or absence (−1) of each contextual factor. In themodel estimation,
the bootstrap technique discussed in Section 3.2 is used, through the full
factorial design, to obtain regression-coefficient distribution.

The analysis on simulation results may be carried out using a
metamodel similar to Eq. (6). Recall that the response regards BIC,
which is a consistent criteria in regression model selection. As for the
used metamodel, we truncated in two-factor interaction, yielding the
metamodel of Eq. (8). The simulated experiments are presented in
Table 4.

BICr ¼ β0 þ
XF

i¼1

βizi þ
XF

i; j¼1;ib j

βi; jzizi þ ε ð8Þ

From the simulated experimental results of Table 4, one can plot the
main effects for BIC, as illustrated in Fig. 1. In this graph, one can see
how each factor impacts the response variable, i.e., how the presence
and absence of each environmental variable improves/worsens BIC
specification.

In Fig. 1, for instance, one can see that the environmental variables
MS and PI significantly impact the BIC. It may be observed by noting
that when environmental variables, say MS, switch from absence
(−1) to presence (+1) model analysis, the BIC reduces from about
1800 to less than 1200, improving BIC specification.8 Interestingly, CI
seems to have no influence on the BIC by switching from absence to
presence, whereas CA seems to slightly worsen BIC specifications.
so that replicating factorial designs yields more robust model analysis.
8 Recall that selection based on BIC chooses according “smaller is better” criteria.

http://www.aneel.gov.br/?idiomaAtual=1


Table 4
24 full factorial design for 4 environmental variables.

Regression MS PI CI CA BIC

1 −1 −1 −1 −1 2257.07 2257.07
2 +1 −1 −1 −1 1189.78 1187.33
3 −1 +1 −1 −1 1286.27 1275.79
4 +1 +1 −1 −1 1112.07 1107.76
5 −1 −1 +1 −1 2261.57 2261.59
6 +1 −1 +1 −1 1157.07 1174.92
7 −1 +1 +1 −1 1353.93 1352.45
8 +1 +1 +1 −1 1083.44 1083.11
9 −1 −1 −1 +1 2258.72 2258.55
10 +1 −1 −1 +1 1114.64 1107.22
11 −1 +1 −1 +1 1287.38 1282.83
12 +1 +1 −1 +1 1085.00 1091.64
13 −1 −1 +1 +1 2261.49 2261.46
14 +1 −1 +1 +1 1089.76 1075.89
15 −1 +1 +1 +1 1362.09 1361.05
16 +1 +1 +1 +1 1052.86 1047.86

Table 5
Parameter estimates for the metamodel.

BIC

Coefficients t-Values

(Intercept) 1449.6 614.77
βMS −340.6 −144.45
βPI −248.8 −105.49
βCI −13.9 −5.90
βCA 1.7 0.73
βMS ⋅PI 219.3 92.99
βMS ⋅CI −13.3 −5.63
βMS ⋅CA −13.7 −5.81
βPI ⋅CI 5.8 2.47
βPI ⋅CA 6.9 2.94
βCI ⋅CA −2.0 −0.83
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Similar results may be drawn by estimating the metamodel of Eq. (8)
for BIC through statistical analysis. The OLS estimates are based on the re-
sults presented in Table 4 and are shown in Table 5. In Table 5, the second
column refers to the estimated coefficients of the metamodel. The third
column refers to the test statistic for the hypothesis t-test, in which the
null hypothesis is H0 : β• = 0 against alternative hypothesis H1 : β• ≠ 0,
where β• refers to a coefficient of the metamodel. For instance, βMS, βPI,
βCI, and βCA stand for the coefficient of the metamodel related to MS, PI,
CI, and CA, respectively. Furthermore, βMS⋅PI refers to the coefficient relat-
ed to the interactionMS ⋅ PI; βMS⋅CI refers to the interactionMS ⋅ CI and so
on.

The statistical analysis of Table 5 reveals very close conclusions gath-
ered by the main effect plots. From the table, one can see that the factor
most important to BIC specification is the environmental variable MS,
followed by PI. Looking at CI, statistical analysis shows a slightly, but
statistically significant negative impact on information index BIC, improv-
ing its specification. As for environmental variable CA, it seems to not bear
significantly on BIC, since CA's t-value is not significant in testing hypoth-
esisH0 :βCA=0. The results on CA suggest that it should be dropped from
the (linear) model.

Interestingly, similar to what has been addressed also by Yu et al.
(2009) for UK electricity utilities, the weather condition is significant on
efficiency performance. Furthermore, one can see fromEq. (7) that, on av-
erage, the impact of weather condition in efficiency performance is small,
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Fig. 1. Main effects for BIC.
suggesting that PI is internalized by DSOs in Brazilian case. As for CI, the
Brazilian regulator advocates, in its technical report (ANEEL, 2011), that
DSOs have a strong capacity to manage their non-technical losses, i.e.,
losses resulting from theft and measurement errors. The results on CI
show a similar conclusion, since it has a small impact on BIC specification.
Still, note that from all the environmental variables considered by Brazil's
regulator, only CA does not improve BIC specification.

However, besides themain factor analysis discussed above, onemay
gather information about interactions between two environmental
variables, i.e., when one environmental variable potentiates another.
Such is the case of MS and CA, which seems to constitute an important
interaction in themodel. This interaction explainswhy CA appears to be
significant in the linear model proposed by Brazil's regulator. Contrary
to a linear impact on the efficiency score, CA reveals a nonlinear influ-
ence on efficiency performance, depending on the MS level. Further-
more, concerning efficiency performance, the interaction between MS
and CI is also statistically significant. Importantly, as all these interac-
tions present negative coefficients, they improve BIC specification. Fi-
nally, interactions are also observed between PI and CI and between Pi
and CA. Nevertheless, these interactions worsen BIC specification, sug-
gesting that it must not be considered in the econometric model.

Finally, based on the discussion above, one can thus estimate the
second stage model considering the main effects (linear coefficients),
except for CA, and interactions MS.CI and MS.CA:

δi ¼ −9:57þ 1:38zMS þ 0:28zPI þ 14:38zCI−1:72zMSzCI
þ 0:03zMSzCA þ ε: ð9Þ

The econometric model of Eq. (9) is significantly different from the
approach used by Brazilian regulator given in Eq. (5). In Eq. (9), for
instance, environmental variable CA nonlinearly affects the DSOs per-
formance, depending on the MS level. Furthermore, besides the linear
relationship between efficiency score, CI also interacts to MS level in
affecting the DSO performance. Note also that, as previously discussed,
the impact of weather condition in efficiency performance is small on
average. The index criteria of the model of Eq. (9) is BIC = 1001.4,
which is lower than one of Eq. (5), yielding a better suited model.

Fig. 2 depicts a radar plot comparing the second stage efficiency
score of Brazil's regulatormodel and the one suggested byDOEmethod-
ology. The center of radar plot refers to the zero efficiency, whereas the
fifth circle represents 100% efficiency. In mean, the difference between
both models is about 2.1% annual permitted Opex. Although the differ-
ence between two models seems to be small, it may represent a differ-
ence of about $ 205 million on annual permitted operational and
maintenance costs between Brazil's regulatormodel and the one select-
ed by DOE approach. Of these, about $ 187.5 millionwould represent an
annual deficit for electricity utilities, i.e., once the semi-parametric two-
stage benchmarking model is adopted, the misspecification of the
second stage may represent about $ 187.5 million less than necessary
income for distribution network operation and maintenance. Indeed,
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for some DSOs, such difference in the models may represent up to 7.5%
deficit in the allowed operational expenditures.

The results above suggest that Brazil's regulator made a fair choice
on environmental variables, but the adopted model seems to be
misspecified. Brazil's regulator defined a linear dependence among effi-
ciency performance and environmental variables. The contrary is
observed, however, when usingDOEphilosophy as a systematic simula-
tion approach for environmental variables analysis. The results show
that interactions between variables must be considered yielding a
nonlinear model when analyzing environmental variables.

6. Conclusions

This paper has introduced a simulation approach based in design of
experiments philosophy to analyze the second stage of semi-parametric
two-stage approaches in the analyses of electricity utility companies' ef-
ficiency. Such analyses are commonly used by the regulator to set DSO's
allowed revenue. In this paper, the two-stage DEA, which is composed
of a traditional DEAmodel (first stage) and a regression analysis consid-
ering environmental variables (second stage), is used. To enable statis-
tical inference in the censored regression, a bootstrap approach is
considered.

In this context, the use of simulated design of experiments is pro-
posed to evaluate the impact of environmental variables on decision-
making units' efficiency, where a full factorial design is used. Using a
metamodel for the efficiency score, this paper shows that, depending
on contextual factor information, the criteria index may be affected
differently. Thus, the regulator, in selecting environmental variables,
should establish a clear objective.

To help with the efficiency analysis of environmental variables,
Bayesian Information Criteria is used, a criteria widely used in selecting
regressionmodels. Such an index is a consistent information criteria and
is based on the assumption that the data comes from a finite order pro-
cess and has the probability of obtaining the true order of the model
that, when the sample size increases, goes to one.
The results obtained shows that Brazil's regulator has fairly chosen
environmental variables. However, the regression model selected may
bemisspecified. Instead of a linear dependence amongefficiency perfor-
mance and environmental variables, the simulated experiments (with
the help of full factorial designs) reveal a nonlinear relationship, due
to interactions among variables. Finally, it is important to note that the
analysis developed in this paper was carried out with real data available
on the regulator's website, and the results may be reproduced as the
dataset used is available in the supplementary data of this paper.
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